Optimal Bounds for Neuman Mean Using Arithmetic and Centroidal Means
نویسندگان
چکیده
منابع مشابه
Optimal bounds for Neuman means in terms of geometric, arithmetic and quadratic means
*Correspondence: [email protected] 2School of Mathematics and Computation Science, Hunan City University, Yiyang, 413000, China Full list of author information is available at the end of the article Abstract In this paper, we present sharp bounds for the two Neuman means SHA and SCA derived from the Schwab-Borchardt mean in terms of convex combinations of either the weighted arithmetic and ...
متن کاملThe Optimal Convex Combination Bounds of Harmonic Arithmetic and Contraharmonic Means for the Neuman means
In the paper, we find the greatest values α1, α2, α3, α4 and the least values β1, β2, β3, β4 such that the double inequalities α1A(a, b) + (1− α1)H(a, b) < N ( A(a, b), G(a, b) ) < β1A(a, b) + (1− β1)H(a, b), α2A(a, b) + (1− α2)H(a, b) < N ( G(a, b), A(a, b) ) < β2A(a, b) + (1− β2)H(a, b), α3C(a, b) + (1− α3)A(a, b) < N ( Q(a, b), A(a, b) ) < β3C(a, b) + (1− β3)A(a, b), α4C(a, b) + (1− α4)A(a, ...
متن کاملBounds for the Arithmetic Mean in Terms of the Neuman, Harmonic and Contraharmonic Means
SB (a, b) = { √ b2−a2 cos−1(a/b) , a < b , √ a2−b2 cosh−1(a/b) , a > b . In this paper, we find the greatest values α1, α2, α3 and α4, and the least values β1, β2, β3 and β4 such that the double inequalities α1SAH(a, b) + (1 − α1)C(a, b) < A(a, b) < β1SAH(a, b) + (1 − β1)C(a, b), α2SHA(a, b) + (1 − α2)C(a, b) < A(a, b) < β2SHA(a, b) + (1 − β2)C(a, b), α3SCA(a, b) + (1 − α3)H(a, b) < A(a, b) < β...
متن کاملOptimal convex combination bounds of geometric and Neuman means for Toader-type mean
In this paper, we prove that the double inequalities [Formula: see text] hold for all [Formula: see text] with [Formula: see text] if and only if [Formula: see text], [Formula: see text] , [Formula: see text] and [Formula: see text] , where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], [Formula: see text] are the Toader, geometric, arithmetic and two Neu...
متن کاملBounds for Combinations of Toader Mean and Arithmetic Mean in Terms of Centroidal Mean
The authors find the greatest value λ and the least value μ, such that the double inequality C(λa + (1-λb), λb+(1-λ)a) < αA(a, b) + (1-α)T(a,b) < C(μa + (1 - μ)b, μb + (1 - μ)a) holds for all α ∈ (0, 1) and a, b > 0 with a ≠ b, where C(a, b) = 2(a² + ab + b²)/3(a + b), A(a, b) = (a + b)/2, and T(a, b) = (a + b)/2, and T(a, b) = (2/π) ∫₀(π/2) √a²cos²θ + b²sin²θdθ denote, respectively, the centro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Function Spaces
سال: 2016
ISSN: 2314-8896,2314-8888
DOI: 10.1155/2016/5131907